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Abstract:

This article is a continuation of my research work, here moving mass case of the dynamical system was

considered. The dynamical problem is solved using Mindlin Goodman, (1950) Generalized Finite Integral Fourier,
Laplace Integral transformations and then convolution theory. Using numerical example, various plots of the
deflections for beams are presented and discussed for different values of axial force N, foundation modulli K and at
fixed rotatory Inertial (r) and also for fixed axial force N and foundation moduli K but at various rotatory inertial

(r) for moving mass.
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Introduction

This research work is concerned with the calculation of the
dynamic response of structural members carrying one or more
traveling loads which is very important in Engineering and
Applied Mathematics as applications relate, for example, to
the analysis and design of highway and railway bridges,
cable- railways and the like. Generally, emphasis is placed on
the dynamics of the structural members rather than on that of
the moving loads: moving mass and moving force models.
Common examples of structural members include beams,
plates, and shells while traveling loads include moving trains,
trucks, cars, bicycles, cranes etc. A structural member may be
elastic, inelastic or viscoelastic as such we have elastic
structural members, inelastic structural members and
viscoelastic structural configurations on which one or more
loads may travel. Simple examples of these structural
members are bridges, railroads, rails, decking slab, elevated
roadways to moving vehicles, girders, belt-drive (carrying
machine chains) and even floppy disks/cassette players’ heads
carrying tape. Pertinent to investigation in the field is the
response of an elastic structure under the cases of moving
concentrated loads with time dependent boundary conditions.
Several other researchers have made tremendous feat in the
study of dynamics of structures under moving loads. In all
of these, considerations have been limited to cases involving
homogeneous boundary conditions and no considerations
have been given to the class of dynamical problems in which
the boundaries are constrained to undergo displacements or
tractions which vary with time. In such cases boundary
conditions are no longer homogeneous and boundary
conditions become non-classical.

In many practical problems that concern the structural
response to moving loads of elastic systems, the supports at
the boundaries are not stationary but undergo different
motions. Often the motions are in the form of lateral
displacement, oscillations or tractions. As such, the boundary
conditions are not homogeneous but are time dependent.
These classes of non-classical boundary value problems are,
in general, resistant to the classical methods of solving
dynamical problems. In fact, it becomes more cumbersome,
when the dynamical problems involve moving loads with or
without consideration of the inertial effect of the moving loads
is taken into consideration.

One of the earliest problems of this type was considered by
Mindlin and Goodman (1950), who described a procedure for
extending the method of separation of variables to the solution
of Bernoulli — Euler beam vibration problems with time-
dependent boundary conditions

Thus, this study concerns the response of double Rayleigh
beams undergoing the actions of moving concentrated masses.

Typical examples of time-dependent boundary conditions are
used to illustrate the dynamical configurations. The solution
technique employed is based on Mindlin and Goodman,
(1950). Generalized Finite Integral Fourier, and Laplace
Integral transformations then convolution theory. Finally, the
analysis is illustrated by numerical examples.

Governing Equation
The structural model of an elastically connected double
Rayleigh beam system under the action of a moving

concentrated load P(X,t) is considered. The transverse
displacementU (X,t), J =1,2, of double uniform Rayleigh

beam of Length L traversed by mass M traveling at a
uniform velocity U, is governed by the fourth order partial
differential equations.
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Where: X is the spatial co-ordinate, t is the time, Uj(X,t)

is the transverse displacement, E isthe Young Modulus, |
is the moment of inertial, ££ is the mass per unit length of the
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beam, I' is the radius of gyration, N is the axial force, K

is the elastic foundation as El is the flexural rigidity of the
beam. For the problem under consideration, the moving load
has mass that is commensurable with the mass of the beam.
Consequently, the load inertia is not negligible but
significantly affects the behavior of the dynamical system. In

this case, load function P(X, t) takes the form.

P(x,t)= P, (x,t){1_;dzu(j"t)}

dt

(1.01)

Where the continuous moving force F’f (X,t) acting on the

beam model is given by

P, (x,t)=Mgs(x— f(t)) (o2

And ﬁ is a convective acceleration operator defined as
dt?

becomes;

d? 9% df(t) o7 (df(t)jz o? d’f(t) o

—=—+2— + —= | —+ —

dt>  at? dt oxot dt ) ox*  dt? ox

(1.03)

In this work, the moving load is assumed to move with
constant speed, consequently, equation (1.03) becomes.

d? 8% 2ue® u?o?
7T a2 T t— 2
dt® ot oxot  ox
Now, on substituting equations (1.01), (1.02) and (1.04) into

(1.00) and assuming that the flexural rigidity EI , and mass
per unit length £¢, do not vary with position X along the

(1.04)

span L, equation (1.00) becomes.
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(1.06)

Equation (1.05) is for the upper beam while (1.06) is for the
lower beam and the boundary conditions of these problems
are taken to be time dependent. Thus, at each of the boundary
points, there are two boundary conditions written as;

D U@t]=Ft) i=12 and
DU(LY)|=F(t) i=34 (1.07)
Where: Di ’s are linear homogeneous differential operators

of order less than or equal to three.

The initial conditions of the motion at time t =0 may in
general be specified by two arbitrary functions thus:
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U(x,0)=U,(x) and W0 _y (y  (108)
ot 0

Operational Simplification of Equation

In this work, the analytical solution to the non-homogeneous
initial boundary value problems (1.00) with non-
homogeneous boundary conditions (1.07) and non-
homogenous initial conditions (1.08) is sought. To this end, an
approach due to Mindlin and Goodman (1950) is extended to
obtain a robust technique which is capable of solving this
class of problems for all variants of support conditions.

First, an auxiliary variable Z(X,t) in the form;

U,61)=2,00)+ 31,00

is introduced. Now, substituting equation (1.09) into (1.05)
and (1.06) transforms the boundary-value-problem in terms
of Uj(x,t) into the boundary value problem in terms of

L j=12 (1.09)

Z,-(X,t)- The functions g, (x) are called the displacement
f(t) are the
displacements at the respective boundaries. The functions
gi(x) are to be chosen so as to render the boundary

influence  functions  while pertinent

conditions for the boundary value problems in Z,—(X,t)

homogeneous.

Thus, substituting (1.09) into equation (1.05) the upper beam,
one obtains;
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and substituting (1.09) into equation (1.07) the lower beam,
one obtains;
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Where: dot () represents the derivative with respect to time,
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while slash (') represents the derivative with respect to space

coordinate.
Now the expression in equation (1.09) must satisfy the
boundary conditions in equation (1.07); consequently, we

have
t>]+i f,0D,[g,(0)]= 1,60), =12

I
=34 (112)

D[ZLt]+Zf ()= 1.@), i

Substituting equatlon (2.09) into the initial equation (1.07)
and (1.08) one obtains.

4

)-> fi(o
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i=1

(1.11)

(1.13)
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Solution Procedure
For slip damping to take place, both the upper and the lower
beams must retain physical contact along the interface so as to

remain as one structure. Thus, Zl(x, t) = Zz(x,t) = Z(X, t)
on adding the upper and the lower beams together, we have

4 2 2 244
z[ﬂ‘%z(x,t)_%%z(x,t)+%z(x,t)%z(x,t)_iz(x,t)]

1 OX ox2at?
2 2 2A2
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= 2L gal-u)- 2503 0g0+ 500
2(—; f,(t)g,(x)—ziz:: £ (0, (x)+ 12 f,’(t)g,”(x)J

M & (x L (x)g! (x)+u? £, (t)g;(x
Mt 351006 2 0 060 -

It is observed that the initial — boundary — value problem in
equation (1.15) is a fourth order partial differential equation
having some coefficients which are not only variable but are
also singular. These coefficients are the Dirac delta functions
which multiply each term of the convective acceleration
operator associated with the inertia of the mass of the moving
load. It is remarked at this juncture that this transformed
equation is now amenable to the method of generalized finite
integral transform used extensively in Oni (2009).

The Generalized Finite Integral Transform Method

The generalized finite integral transform method is one of the
best methods used in handling problems involving mechanical
vibrations. This integral transform method is given by;

2(m.t)= [ 2(x, W, (x)dx (L162)
With the inverse;

2(x,t)= Z“ (m,tV, (x (1.16b)
Where: V/_ j LV 2(x)dx (1.17)

V(X,t), is any function such that the pertinent boundary
conditions are satisfied. An appropriate selection of functions

for beam problems are beam mode shape. Thus the m™"
normal mode of vibrations of a uniform beam given by

V,,(x)=Si

is chosen as a suitable kernel of the integral (1.16a) where
/1m is the mode frequency, A ,B_and Cm are constant.

An important feature of the use of this kernel is that it makes
the transformation suitable for all variants of the boundary
conditions of the dynamical problems. The parameter

A, A, B, and C_ are obtained when the equation (1.18)

is substituted into the appropriate boundary conditions.

By applying the generalized finite integral transform (1.16a)
with the inverse (1.16b), hence, equation (1.15) takes the
form;

z“ (m,t) = BlQA (t) + BZQB (t) + B3Z(m,t) + Blz (0’ I—’t) - rZQc (t) + QD (t) + QE (t) + QF (t)
PV, (Ut) - |G, (1) - G, (1) + G, (t) + G, (1) + G, (1) + G, (t) + G, (t) + G, (1) (1.19)
where
81=2E|, BZ=2N, 83:2K, P:m, andg:M (1.20)
U U 7 U 7.
Qul)=[ Tz W, (x . Qalt)= [ Z(x ), (X

o ox*

Qe (t)= I'ax =
J‘l 2MU

Z(x,tNp (x)dx
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G(t)—BZf(t)J( —— 9 (%)
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G.(t) = 2r22f(t)j(d 50, (x)}/ (x)dx:G (t)—fi f (t)f5(X—ut)gi(X)Vm(X)dX

2MU MU ?
G, (1) = Z f.(t) j S(x—ut)g! (X)V,, (x)dx G, (t) = Z f.(t) j S(x—ut)g(x)V, (x)dx
(1.23)
It is well know that the natural mode in Equation (1.18) satisfies the homogeneous differential equation
d*
El d—4v (X) — uw?V_(x)=0 (1.24)
for the Euler beam. The parameter (a)) is the natural circular frequency defined by
, A'El
wd =" (1.25)
L u
Equation (1.24) implies
L d 4 L
El j [d—4v m(x)jZ(x,t)dx = pw? j V. (X)Z (x,t)dx (1.26)
o\ OX 0
Thus, by (1.15)
Q. () = % w2 Z(m,t) (1.27)
Since

Z(m t) is just the coefficient of the generalized finite integral transform, equation (1.16b) yields

Z(x,t) Zﬂz (k,tV, (x) (1.28)
k= 0 k
82 © 2
s 7 Z.(x1) z —V, (x) (1.29)

And the integral (1.21) can be wntten as

© L 2
U = d
=327 (x,t)j (—zvk (x) V., (x)dx (1.30)
a1 Vi o Ldx
Now using the property of Dirac Delta function as an even function, which can be expressed in Fourier cosine series namely
(gF;97

S(x — 1tt) :—+ icos—cosT (1.31)

When use is made of equatlons (1.28) to (1.31), one obtains

Q, (t)_ Z "7k, t){jv (X)V, (x)dx + ZZCOS i tTCos nfka (x)Vm(x)dx} (1.32)

k l k
Using simllar argument in equations (1. 21) It is straight forward to show that
2MU naut u ,
Q. (t)_—Zzt(k t) jv (V.. (X)dx + 22(:03 j cos—vk (XV.. (X)dx | and
(1.33)
Q, (t)_—ZZ(k t){ jv (V. (x)dx + 22(:03 naut p j Co s—V XV, (x)dx}

(1.34)
Substituting equations (1.27) to (134), into (1.19), after simplifications and arrangements yields

Za(Mt)+ a2 Z:(mt) —ﬁif(k,t)s;(k, m) — er:Zn(k,t)s;(k, m) + g[izn (k,)S; (k, m)
e

+2ZZCos Zn(k t)S,. (k,m n)+2uZZ(k t)S, (k,m)

k=1 n=1
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+auY" Y Cos T Z, k08, (k,m, ) +u” Y Z (K, )S; (k,m)
k=1 n=1 I— k=1
+ZUZZZCOS ”’IZ_“tZt(k,t)s;(k,m, n)
k=1 n=1
=P| Si Al Anl nC0s Aot
L L L
— [Ga t)— Gb O+G. (1) +G, () -G, (1) + G, (1) + G, () + G, (t)J (1.35)
where  G_, Gy, G, i v v G, are as defined in equations (1.23),
al = [a)ri +£J (1.36)
Y7,

First, we shall obtain the particular functions JJ; (X) where i =1,2,3,4.which ensure zeros of the right hand sides of the
boundary conditions for a clamped-clamped beam. Going through the same process discussed in S.O Ajibola.(2014) one obtains

0,(x)=1- 3(82 + 2(83 and ga(x) = 3(82 - 2(83 , (w372

2 2 3
gz(X)ZX—XT and 94(X)=—X—+— (1.37b)

Itis only necessary to compute those of the J, (X) for which the corresponding fi (t) do not vanish. Thus, we need only

gl(x) and g3(x) for our boundary displacement functions fl(t) and f3(t) as defined in J.A. Gbadeyan and 0.0
Agboola.(2012). Thus we can write
f, = BSinQt and f, = Ae " SinQt (1.38)

Where A, B are amplitudes, €2 is frequency and /3 is parameter.
The initial conditions are, again

Z(x,0)=0and Z,(x,0)= - (1.39)
which when transformed yield
Z(m,0)=0 and Z,(m,0)=7, (1.40)
where
17, =1, [L—-cosA, )+ B, (coshA, —1)+ A, sinA, +C, sinh 4] (1.41)
and
= —L—Q (1.42)
770r - 2 '

m
In view of equations (1.37),(1.38 ) and (1.39 ); the transformed equation of our dynamical problem, reduces to

Z_tt(m,t)+(a)§] +%Jz(mt NSz om) - 3 Z, i,

=1

+
3]
—
NgE

~
1]
UN

Z.(k,t)s,(K,m) +2i icos Z.(k,t)S,. (k,m,n)
k=1 n=1

+2uiz_(k t)s;(K,m) +4ui icosn—ﬂUtZ (k,t)S,. (k,m,n)
K=1 k=1 n=1
+u2§z—(k £ (K, m) +zu2§ y cos”_”‘“z (k). (k,m,n) )
K=1 k=1 n=1
:P{ »Sin Ayt .Cos ﬂmut}
L L L
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-0 B+ (f,0-f.o)H, + L0 1+ (HLO-HO) 1

+(f'3(t)—f'1(t)( 13+Hl4Zcoantj (f,(t)- f(t))( 15+HlezcosthH (L43)

Where

M
§=— (1.44)

y7,
H1:N1_N3+Am(N2 N4) ; H,=N;—N, +A\n( Ns)
H; =N, N11+Am(N le) ; H :N13 N15+Am( Ne)
H5:N N19+A\n(N Nzo) He N23+Am( 24)
H; =N, — N27+Am(N st) H —N29 N31+Am( 30~ 32)
6

3 2 12
N ETRE St T ﬂ

K(3 3 2
H10:|:;(FH3 j ( 7 Hi- zﬂ MHu =77 H -5 H,

6 4 12 12
Hie =77 [ 3) ;Hl4:2U(FH6_FH7j

Hy — 5 Ha. Hy =2V
6 12 12 24
HlS:UZ(FHl_Fsz y HlG_U (L HS_FHGJ

(1.45)

Equation (1.43) is the transformed equation governing the model of double uniform Rayleigh beams resting on a constant elastic
foundation. Two special cases of equation (1.43) can be considered namely moving force and moving mass models but moving
force model had been considered in S.0.Ajibola.(2014).sequel to that moving mass case is hereby considered in this work and

their results shall be compared.
The Clamped-Clamped Moving Mass Problem

If the mass of the moving load is commensurable with that of the structure, the inertia effect of the moving mass is not
negligible. Thus, &, # O and the solution of the entire equation (1.46) is desired. Using Strubles asymptotic technique after

simplifications and rearrangements, we obtain;

= = . Aqut A ut . Aqut A ut
Zn(m,t)+y§fz(m,t)=H28smmT+H29cos"‘T+H3osmh”‘T+H31cosh mL

. . nzut .
H.,sinQt +H,, cosQt + H,,e ' sinQt + H.e ™ cosQt + Ho, ”Tst

nzut . A
cosQt+H,, cos 72 sin

ut . nzut
cosQt + H e ™ SinQt + H,e  cos—2

nzut
H,, cos

nrut A, ut nrut . A ut nzut A, ut
H,, cos ﬂL cos mL +H,, cos ﬂL sinh mL +H,; cos ﬂL cosh—"

*

where:  Pgp = P[ (S (m, m)+22cosTtS§C (m,m,n)ﬂ H,, =P5,, H,, =P A

Hy = PorBy,. Hy =PorChi Hy, = [H +/1( H17S;](m’m))] . Hgy =AH,;
H34 = _[HlS +1(H22 _Hlss;(m’ m))] H35 [ng +/1(1_123 _ngs;(m1 m))]

m

ut

(1.46)

m

Hy = _/IZ [H24 - 2H17S;C (m' m, n)] H37 - }“st Hg = /IZ(st - 2HlSS;C (m’ m, n))
n=1 n=1
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Hy =43 (H, —2H,S;c (m,m,n)), H, =-24P3 S5 (m,m,n)

n=1 n=1

H, = —zzPAmis;C (m,m,n), H,, =-24PB,S,.(m,m,n)  and

n=1

H, =-2APC, > S; (m,m,n)

n=1 (1.47)
To obtain the solution of equation (1.43), it is subjected to Laplace transform in conjunction with the initial conditions, after
some simplifications and rearrangements, we obtain

Z(m,t)= Ay Siny, t+ AySinZyt + A, CosZ,t + A, SinhZt + A,CoshZ,t

+ A, SIiNQt + A, ,CosQt + A, Cosy t + Ay, SINZt + A, SinZ,t + A, CosZ,t
+A,,CosZ,t+ A, SinZ,t + A, SinZt + A,,CosZ,t + A,,CosZgt + A,.e 7 SinOt
+ A7 CosQt + A, e 7SinZ,t + Ae " CosZ,t

+ A,e”SinZ,t + A,,e *CosZ,t + A,,CosZ,tCosht

+ A,,CosZ,tSinht+ A, SinZ,tSinht+ A, SinZ,tCosht. (1.48)
Where
A2 — — HZBZO H3OZO H32Q HSGZ3 HSGZ4

9

(yrif _Zg)}/mf _(75# +Z<)2)7’mf _(7rif _QZ)J’mf _27mf (7r$1f _Z?,Z)+27mf (7/r31f _Zf)
+(7n21f _Zla_2 +182)H38+2(7r121f +p’ +%32)H39 _ Vmt (7/r$1f _Zj"‘ﬂz)Hss"'(?/rif +f° +Zﬂf)"'39
vz +23+ 52 ) -4, 22 2l +22 4 57 41,2
H, Z; H,Z, (7,% +222 +1XH45 _H44) L :l
- 2 AN 2 2y T 2 +
27 ot (7’mf _27) 2(7mf _Zs) Y m l(j/;f +222 +1) —4;/%25] Y mt
Ay = H28/(7r$1f _Zoz)’AM: H29/(7/r$1f _Zoz)? Ay = H30/(7r$1f _Zoz)’A33 :H31/(7r$1f _Zoz)

_ 2 "2 _ 2 A"2). _ —Hy _ Hy _ Hay
Ao =Hanllr2 =0} A =Ha sy ~0°): A [(%if —228) (7 +22) 72 -
_ZQIBHM_(}/rif _QZ""IBZ)HSF : Hy  Hy _ZZ.S'BH%_(}/”ZTf _Z§+ﬂ2)H319
2 +07+ p7F —ay207] "2k -23) 2vi -22) 22 + 22+ 7Y 4222
+ 22_4:BH38 _(7r$1f _Zj +IBZ)H:§|9 B H,, H, _ g?ﬁif _222 +1XH44 + H45)1
20z +22+p2f —ay2 22| 2w ~Z7) 2 ~Z5) | +22+1f 457,22

A37: 2H36 5 rA38:_ 2H36 - rA39: 2H37 - rA40: 2H37 >
2(7mf —Z; ) 2(7/mf _24) 2(7/mf _Zs) Z(me _24)

A = H4O A =— H41 A = H4l A = H41

e -zy) T 2 -23) N 2 -z2) Y 2 -z3)

_(Zrif _QZ+IB2)H34_ZQIBH§5 A :ZFQﬁHM"'(?’nzwf _QZ+IBZ)H§5

Ay = ,
“ |_(7/§1f +QZ+/32)2_47§#QZJ K |_(7rif +Qz+ﬁ2)2_47r§fQZJ
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Equation (1.48) is then inverted to obtain

Z(x,t)= %iz_(m,t){cosh X
m=1

L
Thus,

A X

m —_—

—CO0S

On (sinh

+2241f —4y2, 22
(1.49)

A X

m

)

m X

—sin

2 3 2 3
U(x,t)=Z(xt)+ 1—3(8 +2(%j SinQt + 3(8 —2[8 esinQt  (L50)

Equation (1.50) is the transverse response of a Rayleigh beam
under the action of a moving mass whose two clamped edges
are constrained to undergo displacements which vary with
time.

Numerical Calculation and Discussion of the Results
Again, to illustrate the analytical results, the uniform Rayleigh
beam of length L=12.192m is considered, the load velocity u

=8123and E =2.109x10°kg/m .The values of the

foundation moduli K varied between 0 and 400000 and for
fixed values of rotatory inertia r=1.The traverse deflections of
the uniform Rayleigh beam are calculated and plotted against
time for values of rotatory inertia and foundation stiffness K.

Fig.1, Shows the transverse displacement response of
clamped-clamped moving mass of double uniform Rayleigh
beams moving with variable velocities for various values of
axial force N and fixed value of foundation moduli K =40000.
From the graph it shows that the response amplitude decreases
as the values of the axial force N increases. More so, fig.2
shows that the traction amplitude of the clamped-clamped
moving mass of double uniform Rayleigh beam moving with

1000000

variable velocities for various values of foundation moduli K
when the axial force is fixed at N=20000. It is clearly seen
from the graph that the traction amplitude reduces as the
values of the foundation K increases. Fig 3 Shows the
deflection amplitude for clamped-clamped uniform Rayleigh
beam under the action of moving mass for various values of
rotatory inertia and for fixed value of axial force N=200000
and for fixed value of foundation modulus K=200000. it was
found out that as the values of roatory inertia increases the
deflection profile reduces.fig.4 shows the comparison of the
moving force and moving mass clamped-clamped uniform
Rayleigh beams moving with variable velocities for fixed
value of foundation moduli K and axial force N respectively.
However, it shows that the response amplitudes of moving
force S.0.Ajibola (2014) is lower than that of the moving
mass.

Consequently, going by this result it confirmed that moving
force problem cannot be a good approximation to a moving
mass problem rather it is tragic.
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Fig 1: transverse displacement response of clamped-clamped moving mass of uniform beam
for various values of axial force N and fixed value of foundation moduli K=40000
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Fig 2: Traction Amplitude of the clamped-clamped moving mass double uniform beam for various
values of foundation moduli K and for fixed value of axial force N=20000
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Fig 3 Traction Amplitude of clamped-clamped uniform Rayleigh beam under the action of moving mass for
various values of rotatory inertia R and for fixed value of foundation modulus K=400000 and for fixed
axial force N=400000.
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Fig 4: Comparison of the Moving force and Moving mass of the clamped-clamped double

uniform beam for fixed values of axial force N and foundation moduli K
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